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THE BRACH~STOCHRONE MOTlON OF A MECHANICAL SYSTEM 
WITH NON-HOLONOMIC, NON-LINEAR AND NON-STATIONARY CONSTRAINTS* 

D. ZEKOVIC: 

Further to previous studies /I, 21 of the brachistochrone motion of 
non-holonomic mechanical systems with linear homogeneous constraints, 
consideration is given here to non-holonomic, non-linear and 
non-stationary mechanical systems. The problem is to formulate the 
differential equations of the brachistochrone motion of non-holonomic, 
non-linear and non-stationary mechanical systems and to determine the 
additional forces which must be introduced in order to implement motion 
of this type. 

1. Let us analyse the constraints imposed on a mechanical system which has to be moved 
from position A to position B in minimum time. The mechanical system is moving in a known 
force field. The additional forces satisfy the condition 

R,q’@- = 0 (1.1) 

Thus, they do not affect the law governing the variation of the total mechanical energy of 
the system. Here and below repeated indices will indicate summation. The indices have the 
following ranges: i.j,k,s=f ,... >rz; a,$,=l,..., m; v,p=m-!-f,...,m+L 

The constraints in the second group are non-holonomic, non-linear and non-stationary: 

Q'V = qv (CJi, d", t) (1.2) 

In addition to (1.1) and (1.2), we introduce two additional relations (see my doctorate 
dissertation""@ and /3/): 

(1.3) 

(1.4) 

Here T is the kinetic energy of the system: 

T = 11 e.. (~~)~.~~.j 2 II 

n (49 is the potential energy, Qr are non-conservative forces which depend in the most 
general case on the generalized coordinates, generalized velocities 
additional and as yet undertermined forces. 

The starting position A of the system is specified in terms of 
ized coordinates Q(O)', and the terminal position B by the time t, 
and generalized coordinates C&J. At the starting position Q(O) 
is given: 

T -t- EVPV 

and time, and R, are 

the time t, and general- 
(as yet undetermined) 

the following quantity 

(1.5) 

In the case of homogeneous constraints t" L 0, and therefore (1.5) is simply the kinetic 
energy of the system. In the general case this quantity has the form T + s"py = T,* - T,,*, 
where y,* = T.2 l,+*Y is the quadratic part of the kinetic energy and T,* is the part of 

the kinetic energy independent of the generalized velocities. 
The time required for the system to move from A to B is given by the integral 

,=f& (2.6) 
1. 
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This integral has to be minimized. When it is a minimum, the system is performing 
brachistochrone motion . The problem is to determine the conditions for the functional (1.6) 
to have an extreme point, subject to the constraints (l.l)-(1.4). This variational problem 
may be phrased equivalently as follows: find the conditions for the following new functional 
to have an extreme point /4/: 

where the integrand is 

(1.8) 

L $, va, ep being Lagrange multipliers of the constraints. 

According to the rules of variational calculus, the conditions for the functional (1.7) 
to have an extreme points reduce to the following equations /5/: 

d aF aF 
dtaH--aR= 0 3 vu - hp = 0 

a a 

d aF aF -_04va__lla~0 
dt 0; ap, 

(I.9 

(1.10) 

d aF aF --i---= o+-y~+p~.-;o (1.11) 
dt aPv ah 
d aF aF 

- 0, -Jr---- 
d OF aF o _-_-= (1.12) 

aq’a ap dt aq+ aqy 

$44 + = 0 -+ h p15pa (1.13) 
1 

(1.14) 

Eqs.(1.9)-(1.12) are the Euler equations of the variational problem with integrand (1.8). 
Eq.(1.13) is the natural boundary condition, while Eq.(1.14) is the transversality condition 
at the right end. 

Eqs.(1.12) may be written explicitly as follows: 

(1.15) 

haP_~_eV.-e,$+Iv,=o 
dt aq.v 

The new variables F, F*, &, ~2, S,“, lVm* and A', in Eqs.il.15) are: 

F = %‘T + h&q’” (“, = Q, + Qt”= Q,- $) 

F* = F Ip.,+.\. = h’T* t- hi&*q’l’ 

r. 
Q,%* = QP* + 0;” = QH* - ($ -+ -$ $11 

u,=e,--h -g-$-fg+$-Q”) 
i 

ya” = 
L 

a@ alpV a@ 
F 

+_-__$($j] 
dq” aqY 

6,P = 
[ 

_$&q.1’. +-$+p-*($$)] 

N,* = - EP 

(1.1(i) 

t- 
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After some reduction, Eq.tl.14) becomes 

(1.17) 

In sum, we obtain the following version of the problem: solve Eqs.Cl.2) and (1.15) and 
the following equation, which follows from (1.1) and (1.4): 

(1.18) 

This system of equations contains one second-order Eq.(1.18), 1 first-order Eqs.tl.21, m 
third-order equations and 2 second-order Eqs.(1.15) in the m + 2Z+ 1 = n f 1 -j- 1 unknowns 
qi, es and h. The change of variables q’a s yz, y’a = x”, x = A reduces it to a system of 
first-order differential eauations containina the same number of constants of intesration. 
The constants of 
natural boundary 

Now, noting 

inteqration are determined bv 2n boundary conditions Qco,', Qo)i* and the 
condition at the left end (1,13), which may be reduced to the equation 

h q%p, + 4’“6P” 
[ 

tht the quantity (1.5) is given, we obtain 

Similarly, 

Since (1.5) is not fixed at the right end, it follows that &j = @. The transversality 
condition (1.17) at the right end gives one more equation for the arbitrary constants. 

Thus, we have 2n + m f 2 = 3m + 21+ 2 equations for the same number of constants of 
integration. Since the time tl must also be determined, we can take (1.5) as an additional 
condition. 

Once the functions qi = 9% (t) have been determined, the additional forces are found 
from the equations 
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2. As an example, let us consider two heavy material points ,l^~, and .W: of unit mass, 
connected by a rod of fixed length 22 and moving in a vertical plane in such a way that the 
velocity of the midpoint v of the rod is perpendicular to the segment M,M,. This non-holo- 
nomic constraint can be implemented by means of a knife-edge, as in the case of the Chaplygin 
sleight /6/ (see Fig.1). 

Fig.1 Fig.2 

Let X, y be the coordinates of the point Ep, and 'P the angle of rotation of the knife- 
edge (Fig.1). In the case under consideration the total energy is conserved fwe may assume 
that its constant value is zero). Therefore the functional (1.7) becomes 

(2.1) 

and the equations of the constraints may be taken as Y' -zXgcp = 0, T f II= O-The extremality 
condition for the functional (2.1) yields the following equations: 

2Ar' - e tg 'p = ,$ (?,,y' -,- 0)' + %Ag = 0 (2A(p')'-I- 82' cos-2 p = 0 (2.2) 

Eqs.(2.2), together with the two equations of the constraints, form a closed system of 
equations for the coordinates z> !I? 'p and multipliers A and 0. These equations also involve 
an as yet undertermined parameter $1. 

The problem was solved numerically with the following data: starting position 58 = 0 t 
y, = 2, q,, = 0.785, terminal position x1 = 0.06, gr := 2.65, Q =z 2.628 and starting velocities zoo' = 2, 
yO' = 2, va' = 5.41. By varying the constant ~1, we found the required brachistochrone curve passing 
through the point (zlr y1 v,); this turned out to correspond to the value c, = 0.001. The 
minimum time for the system to move from (IO, Y,, cl‘") to (I~. gl, (pl) was 0.299 sec. The trajec- 
tory of the point M is shown in Fig.2. 
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